Развернутая таблица теплопотерь
В таблице tвн — температура воздуха в помещении, Q — теплопотери помещения / ограждающей конструкции / теплопроводного включения, Qуд — удельные теплопотери помещения.
Помещение/ Наружная ограждающая конструкция/ теплопроводное включение | Площадь или длина | tвн, °C | Q, Вт | Qуд, Вт/м2 |
1.1 Коридор | 23.1 м2 | 22 | 1745 | 76 |
Окна | 0.3 м2 | 20 | ||
Двери | 2.3 м2 | 191 | ||
Стены | 14.6 м2 | 220 | ||
Пол Зона 1 | 10.04 м2 | 72 | ||
Пол Зона 2 | 11.21 м2 | 49 | ||
Пол Зона 3 | 4.48 м2 | 11 | ||
Инфильтрация | 23.1 м2 | 935 | ||
Примыкание стен к полу на грунте | 5.02 м | 225 | ||
Примыкание стен к перекрытию | 5.02 м | 22 | ||
1.2 Кладовая | 6.8 м2 | 19.5 | 866 | 127 |
Окна | 1.7 м2 | 106 | ||
Стены | 16 м2 | 227 | ||
Пол Зона 1 | 6.72 м2 | 43 | ||
Пол Зона 2 | 0.44 м2 | 2 | ||
Инфильтрация | 6.8 м2 | 260 | ||
Примыкание стен к полу на грунте | 5.36 м | 200 | ||
Примыкание стен к перекрытию | 5.36 м | 19 | ||
Примыкание стен друг к другу | 3.1 м | 8 | ||
1.3 Санузел | 7.3 м2 | 25 | 674 | 92 |
Окна | 1.2 м2 | 85 | ||
Стены | 6.91 м2 | 111 | ||
Пол Зона 1 | 4.64 м2 | 38 | ||
Пол Зона 2 | 3.36 м2 | 17 | ||
Инфильтрация | 7.3 м2 | 316 | ||
Примыкание стен к полу на грунте | 2.32 м | 98 | ||
Примыкание стен к перекрытию | 2.32 м | 10 | ||
1.4 Котельная | 7.7 м2 | 19.5 | 635 | 82 |
Окна | 1.2 м2 | 75 | ||
Стены | 7.81 м2 | 111 | ||
Пол Зона 1 | 5.22 м2 | 33 | ||
Пол Зона 2 | 3.78 м2 | 15 | ||
Инфильтрация | 7.7 м2 | 294 | ||
Примыкание стен к полу на грунте | 2.61 м | 97 | ||
Примыкание стен к перекрытию | 2.61 м | 9 | ||
1.5+1.6 Кухня + Гостинная | 39.1 м2 | 22 | 4252 | 109 |
Окна | 11.94 м2 | 792 | ||
Стены | 48.54 м2 | 731 | ||
Пол Зона 1 | 28 м2 | 202 | ||
Пол Зона 2 | 12 м2 | 53 | ||
Пол Зона 3 | 0.46 м2 | 1 | ||
Инфильтрация | 39.1 м2 | 1583 | ||
Примыкание стен к полу на грунте | 18 м | 713 | ||
Примыкание стен к перекрытию | 8.7 м | 33 | ||
Примыкание стен к балконному перекрытию | 9.3 м | 126 | ||
Примыкание стен друг к другу | 6.2 м | 18 | ||
1.7 Жилая комната | 18.5 м2 | 22 | 1843 | 100 |
Окна | 2.72 м2 | 180 | ||
Стены | 26.16 м2 | 394 | ||
Пол Зона 1 | 13.78 м2 | 99 | ||
Пол Зона 2 | 5.61 м2 | 25 | ||
Инфильтрация | 18.5 м2 | 749 | ||
Примыкание стен к полу на грунте | 8.89 м | 352 | ||
Примыкание стен к перекрытию | 8.89 м | 34 | ||
Примыкание стен друг к другу | 3.1 м | 9 | ||
2.1 Коридор | 19.5 м2 | 19.5 | 1102 | 57 |
Окна | 1.5 м2 | 94 | ||
Стены | 3.74 м2 | 53 | ||
Потолок | 21.29 м2 | 202 | ||
Инфильтрация | 19.5 м2 | 745 | ||
Примыкание стен к перекрытию | 2.4 м | 9 | ||
2.2 Жилая комната | 21.2 м2 | 22 | 1612 | 76 |
Окна | 2.4 м2 | 159 | ||
Стены | 20.81 м2 | 314 | ||
Потолок | 23.69 м2 | 238 | ||
Инфильтрация | 21.2 м2 | 858 | ||
Примыкание стен к перекрытию | 9.94 м | 38 | ||
Примыкание стен друг к другу | 1.85 м | 5 | ||
2.3 Жилая комната | 18.5 м2 | 22 | 1445 | 78 |
Окна | 2.4 м2 | 159 | ||
Стены | 19.08 м2 | 287 | ||
Потолок | 20.77 м2 | 209 | ||
Инфильтрация | 18.5 м2 | 749 | ||
Примыкание стен к перекрытию | 9.25 м | 36 | ||
Примыкание стен друг к другу | 1.85 м | 5 | ||
2.4 Жилая комната | 18.5 м2 | 22 | 1474 | 80 |
Окна | 2.08 м2 | 138 | ||
Стены | 19.51 м2 | 294 | ||
Потолок | 20.65 м2 | 207 | ||
Инфильтрация | 18.5 м2 | 749 | ||
Примыкание стен к перекрытию | 4.2 м | 16 | ||
Примыкание стен к балконному перекрытию | 4.74 м | 64 | ||
Примыкание стен друг к другу | 1.85 м | 5 | ||
2.5 Жилая комната | 17.2 м2 | 22 | 1461 | 85 |
Окна | 3.36 м2 | 223 | ||
Стены | 17.71 м2 | 267 | ||
Потолок | 19.26 м2 | 193 | ||
Инфильтрация | 17.2 м2 | 696 | ||
Примыкание стен к перекрытию | 4.2 м | 16 | ||
Примыкание стен к балконному перекрытию | 4.44 м | 60 | ||
Примыкание стен друг к другу | 1.85 м | 5 | ||
2.6 Санузел | 7.7 м2 | 25 | 555 | 72 |
Окна | 0.56 м2 | 40 | ||
Стены | 4.87 м2 | 78 | ||
Потолок | 8.71 м2 | 93 | ||
Инфильтрация | 7.7 м2 | 333 | ||
Примыкание стен к перекрытию | 2.61 м | 11 | ||
Площадь дома | 205.1 м2 | 17664 | 86 | |
Все окна | 31.36 м2 | 2070 | ||
Все двери | 2.3 м2 | 191 | ||
Все стены | 205.74 м2 | 3088 | ||
Весь пол зона 1 | 68.4 м2 | 488 | ||
Весь пол зона 2 | 36.4 м2 | 160 | ||
Весь пол зона 3 | 4.94 м2 | 12 | ||
Весь потолок | 114.37 м2 | 1143 | ||
Вся инфильтрация | 205.1 м2 | 8266 | ||
Все примыкания стен к полу на грунте | 42.2 м | 1685 | ||
Все примыкания стен к перекрытию | 33.44 м | 254 | ||
Все примыкания стен к балконному перекрытию | 9.24 м | 250 | ||
Все примыкания стен друг к другу | 19.8 м | 57 |
Методика просчета однослойной теплоизоляционной конструкции
Основная формула расчета тепловой изоляции трубопроводов показывает зависимость между величиной потока тепла от действующей трубы, покрытой слоем утеплителя, и его толщиной. Формула применяется в том случае, если диаметр трубы меньше чем 2 м:
ln B = 2πλ [K(tт – tо) / qL – Rн]
В этой формуле:
- λ – коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
- K – безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения K можно взять из Таблицы 1;
- tт – температура в градусах транспортируемой среды или теплоносителя;
- tо – температура наружного воздуха, ⁰C;
- qL – величина теплового потока, Вт/м2;
- Rн – сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.
Таблица 1
Условия прокладки трубы | Значение коэффициента К |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода до 150 мм. | 1.2 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода 150 мм и более. | |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на подвесных опорах. | |
Неметаллические трубопроводы, проложенные на подвесных или скользящих опорах. | 1.7 |
Бесканальный способ прокладки. |
Значение теплопроводности утеплителя λ является справочным, в зависимости от выбранного теплоизоляционного материала. Температуру транспортируемой среды tт рекомендуется принимать как среднюю в течение года, а наружного воздуха tо как среднегодовую. Если изолируемый трубопровод проходит в помещении, то температура внешней среды задается техническим заданием на проектирование, а при его отсутствии принимается равной +20°С. Показатель сопротивления теплообмену на поверхности теплоизоляционной конструкции Rн для условий прокладки по улице можно брать из Таблицы 2.
Таблица 2
Rн,(м2 ⁰C) /Вт | DN32 | DN40 | DN50 | DN100 | DN125 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN500 | DN600 | DN700 |
tт = 100 ⁰C | ||||||||||||||
tт = 300 ⁰C | ||||||||||||||
tт = 500 ⁰C |
Примечание: величину Rн при промежуточных значениях температуры теплоносителя вычисляют методом интерполяции. Если же показатель температуры ниже 100 ⁰C, величину Rн принимают как для 100 ⁰C.
Показатель В следует рассчитывать отдельно:
Таблица тепловых потерь при разной толщине труби и теплоизоляции.
B = (dиз + 2δ) / dтр, здесь:
- dиз – наружный диаметр теплоизоляционной конструкции, м;
- dтр – наружный диаметр защищаемой трубы, м;
- δ – толщина теплоизоляционной конструкции, м.
Вычисление толщины изоляции трубопроводов начинают с определения показателя ln B, подставив в формулу значения наружных диаметров трубы и теплоизоляционной конструкции, а также толщины слоя, после чего по таблице натуральных логарифмов находят параметр ln B. Его подставляют в основную формулу вместе с показателем нормируемого теплового потока qL и производят расчет. То есть толщина теплоизоляции трубопровода должна быть такой, чтобы правая и левая часть уравнения стали тождественны. Это значение толщины и следует принимать для дальнейшей разработки.
Рассмотренный метод вычислений относился к трубопроводам, диаметр которых менее 2 м. Для труб большего диаметра расчет изоляции несколько проще и производится как для плоской поверхности и по другой формуле:
δ = [K(tт – tо) / qF – Rн]
В этой формуле:
Зачем нужен расчет теплопотерь дома?
Расчет теплопотерь дома – это учет всех составляющих, влияющих на потери тепла:
- Внешняя среда;
- Внутренняя составляющая.
Особенно актуально знать потери тепа в холодное время года. Решающим фактором здесь становится разность температур между внешней и внутренней средой. Потери тепла в зависимости от строительного материала необходимо рассчитать перед постройкой здания. Различные материалы характеризуются разной теплопроводностью. Дом, построенный из кирпича и бруса, по-разному задерживают тепло, и, соответственно для них требуется различный расход топлива на обогрев.
Очень большое влияние на сохранение тепла в помещении оказывает площадь. Недаром в Сибири бани строят маленькими, с низкими потолками.
Так же одним из факторов, влияющих на потерю тепла в помещении, является качественная теплоизоляция. Теплоизоляция, выполненная из некачественных материалов или посаженная на неправильный герметик (клей), будет только ухудшать ситуацию. В полостях такого материала может скапливаться вода. А, как известно, вода хорошо проводит тепло и не сохраняет его.
Общая потеря тепла складывается из всех составляющих:
Q=Qстен+Qокон+Qпола+Qкровли Qвытяжных систем
Рассчитать теплопотерю можно воспользовавшись он-лайн калькулятором. Здесь мы рассмотрим, как рассчитать теплопотери дома, учитывая основные факторы
Расчет теплопотерь дома
Влияние строительных материалов
По требованию СанПина максимальная разница между температурой воздуха и температурой стены должна быть 4°С. Этот показатель зависит от термического сопротивления материала.
Для каждого материала свой показатель термического сопротивления выраженный в °С м2/Вт:
- Кирпичная кладка – 0,73
- Брус – 0,83
- Керамзитная плита – 0,58
Однако это не единственный показатель, влияющий на тепло в доме. Притом что, тепловое сопротивление дома из бруса почти такое же как у кирпичной кладки, он гораздо хуже сохраняет тепло. Связано это с тем, что между бревен находятся зазоры, которые необходимо прокладывать утеплителем. В кирпичной кладке все зазоры закрыты растворов цемента, который увеличивает термическую сопротивляемость почти вдвое. Керамзитная плита теряет тепло за счет швов. Поэтому дополнительные потери также должны быть учтены при подсчете тепловых потерь.
Информация по назначению калькулятора
Онлайн калькулятор водяного теплого пола предназначен для расчета основных тепловых и гидравлических параметров системы, расчета диаметра и длины трубы. Калькулятор предоставляет возможность осуществить расчет теплого пола, реализованного «мокрым» способом с обустройством монолитного пола из цементно-песчаного раствора или бетона, а также с реализацией «сухим» методом, с использованием тепло-распределяющих пластин. Устройство системы ТП «сухим» методом предпочтительно для деревянных полов и перекрытий.
При завышении предельно допустимых значений основных параметров, калькулятор укажет на ошибки.
Тепловые потоки, направленные снизу-вверх, являются наиболее предпочтительными и комфортными для человеческого восприятия. Именно поэтому обогрев помещений теплыми полами становится наиболее популярным решением по сравнению с настенными источниками тепла. Нагревательные элементы такой системы не занимают дополнительного места в отличие от настенных радиаторов.
Правильно спроектированные и реализованные системы теплого пола являются современным и комфортным источником обогрева помещений. Использование современных и качественных материалов, а также правильных расчетов, позволяет создать эффективную и надежную систему отопления со сроком службы не менее 50 лет.
Система теплого пола может выступать единственным источником обогрева помещения только в регионах с теплым климатом и с использованием энерго-эффективных материалов. При недостаточном тепловом потоке обязательно применение дополнительных источников тепла.
Полученные расчеты будут особенно полезны тем, кто планирует реализовать систему отопления теплого пола своими руками в частном доме.
Для более точного расчета обязательно обратитесь к квалифицированным специалистам в вашем регионе!
Какие мероприятия планируют по результатам анализа теплопотерь
При выявлении тепло утечки принимают решение о капитальном ремонте здания. В целях энергосбережения утепляют наружные стены, монтируют более мощные и современные системы отопления. Устанавливают более качественные окна, с большим числом стеклопакетов, оказывающие тепловое сопротивление потерям. Однако чаще всего производят ремонт кровли, поскольку она является наиболее уязвимым местом для выхода тепла.
Если ваша семья, даже при наличии «теплых полов», оконных стеклопакетов, застекленной лоджии и современной входной двери, мерзнет – причину нужно искать в утечках теплового ресурса. Расчетные данные будут поводом для обращения в управляющую компанию и инициации соответствующих действий с ее стороны.
О калькуляторе
Онлайн-калькулятор позволяет рассчитать теплопотери бытового трубопровода находящегося в режиме останова и подобрать саморегулирующийся греющий кабель для компенсации тепловых потерь и защиты трубы от замерзания.
Калькулятор позволяет рассчитывать тепловые потери через поверхность трубопровода, расположенного на открытом воздухе, в помещении и под землей.
Алгоритмы расчета тепловых потерь через стенку трубы соответствуют:
- ГОСТ 62086-2-2005
- СП 41-103-2000
Но при этом имеют определенные ограничения:
- Расчет производится на поддержание температуры +5°С на поверхности трубы.
- Материал трубопровода и кабельная арматура не учитываются.
Данные о минимальной температуре окружающей среды соответствуют СНиП 23-01-99.
Данной функциональности достаточно для расчета защиты от замерзания водопроводных и канализационных труб.
Это интересно: Калькулятор расчета теплопотерь помещения: разбираем обстоятельно
Теплопотери стен
Qcт=Kст*Fст(tвнут-tвнеш), где
- Kст – коэффициент теплопроводности материала, °С м2/Вт;
- Fст – площадь стены, м2;
- tвнут – температура внутри помещения, °С;
- tвнеш – температура снаружи, °С.
Стены дома непосредственно контактируют с внешней средой, поэтому при правильной постройке большая часть тепла будет уходить именно через них. Помимо материала на теплопотери за счет стен влияет внутренняя и наружная отделка, количество слоев стены и их теплопроводность, толщина стены. Слабыми местами в стеновых потерях являются потери на швы между панелями, различные технологические отверстия.
Для того чтобы сократить потери необходимо между слоями стены создать воздушную прослойку или прослойку, утепленную пористым утеплителем, так как воздух плохо проводит тепло и помогает сохранить его в помещении. Технологические отверстия также следует обкладывать утеплителем, для лучшего сохранения тепла.
Теплопотери в жилом доме – понятие и влияние на условия проживания
Теплопотерей называется уровень тепла, утрачиваемого помещением через стены, окна, потолок и пол за определенное количество времени. Измеряется данная величина в ваттах на квадратный метр, и зависит от разницы внутренней и внешней температуры воздуха – чем она ниже, тем выше энергоэффективность здания.
Годовая разница природных температур составляет порядка 60 градусов – от –30° в зимний период до +30° летом. Комфортной температурой для человека считается уровень в +18/+24°, который необходимо поддерживать в жилых зданиях. Добиваются этого за счет стройматериалов (теплоизолирующих потолков, стен и полов, энергосберегающих стекол), систем обогрева, проветривания или кондиционирования. Законодательно установлены строительные правила, нормы и стандарты, определяющие тепловую защиту строений.
Что такое теплопотери? Почему их нужно знать?
Теплопотери – это то количество тепла, которое теряют внутренние помещения через ограждающие перегородки, если температура за окном ниже той, которая должна поддерживаться внутри здания.
Необходимость расчета теплопотерь обусловлена задачей проектирования системы отопления, кондиционирования. От данного показателя зависит выбор климатической системы, мощности котельной, сечения труб, количества секций радиатора, применения системы теплый пол, других отопительных устройств.
Усредненные показатели имеет смысл использовать лишь тогда, когда к помещению не предъявляется строгих требований по поддержанию определенных постоянных температур. Остальные случаи, особенно когда речь идет о жилых, общественных строениях с постоянным пребыванием людей без верхней одежды, требуют произвести точный расчет показателя теплопотерь.
На сегодняшний день человечество озадачено проблемой рационального потребления ресурсов, особенно энергетических. Правильный расчет теплопотерь позволит определить наиболее рациональный путь организации системы отопления, чтобы помещение прогревалось до комфортной температуры, при этом энергопотребление не было избыточным.
Выявление источников теплопотерь самостоятельно и дальнейшая их ликвидация
Начать стоит с окон и дверей. Зачастую монтаж этих конструкций производится некачественно, что и становится причиной утечки тепла. Способ прост: необходимо провести рукой по контуру изделия, что позволит выявить сквозные щели. Проблемные места необходимо заделать любым теплоизолирующим материалом, сменить уплотняющие резинки. В случае если окно или дверь пропускает тепло во многих местах, разумнее будет установить новую дверь и новый стеклопакет. Следующий шаг – проверка внешних стен. Те, которые устроены некачественно и будут чрезвычайно холодными. Стена отдает много тепла на улицу по 2-м причинам: некачественная теплоизоляция или неправильная работа радиатора. С 1-м случаем разобраться сложно, а со 2-м – нет. Необходимо выпустить из радиатора лишний воздух, проверить устройство на наличие в нем мусора, так как некоторые его секции могут не нагреваться вовсе. Следующий основной этап – проверка крыши. Установив, в какой ее части имеются наибольшие сквозные щели, необходимо заполнить их утеплителем. Избежать такой проблемы можно, если изначально работы проведены качественно, тогда утечки, уходящие через крышу, будут минимальны. Вышеперечисленное – это основные и самые частые «больные» места, начать следует именно с них. Устранение этих недостатков сэкономит большое количества тепла, но проблема может быть и в другом: вентиляции, фундаменте и другом
Правила вычисления веса стальной трубы
Многим людям может показаться, что определение массы труб является простым делом
Однако подобный расчет имеет множество нюансов, на которые необходимо обратить внимание
В первую очередь важно запомнить, что при приобретении партии стальных труб обязательно требуется производить проверку веса. Любые расхождения в расчетах могут привести к тому, что материала попросту не хватит
Любые расхождения в расчетах могут привести к тому, что материала попросту не хватит.
Избыток веса может отразиться на строительных характеристиках будущей конструкции. Нагрузка, оказываемая на сооружение, должна находиться в пределах, рассчитанных ранее и указанных в соответствующем чертеже. Вес 1 метра трубы вычисляется с учетом марки стали, из которой выполнено изделие.
Часто случается так, что фактический вес трубы не соответствует удельной массе, прописанной в нормативной документации. Это происходит из-за особенностей производства. Изделие, идеально соответствующее документации, выполнить практически невозможно. Поэтому в ГОСТах указываются допустимые по размерам отклонения.
При определении веса метра стальной трубы рекомендуется воспользоваться сразу несколькими способами. Это позволит свести расчетные ошибки к минимуму. Если для определения массы применяется формула, то тогда рекомендуется достоверность итоговых результатов перепроверить несколько раз.
Укрупненный расчет
Выше описана методика точного подсчета теплопотерь, однако далеко не все используют данную формулу, зачастую обыватели довольствуются усредненными данными, уже посчитанными для помещения высотой потолков до 3 метров. Укрупненный расчет производят исходя из значения 100 Вт/1 квадратный метр помещения. Соответственно дома площадью 100 м2 необходимо обеспечить отопительную систему мощностью примерно 10 000 Вт.
Подобные расчеты являются достаточно усредненными. Учитывая, что в нашей стране большая вариативность климатических зон, использовать такой расчет нецелесообразно. При недостаточной мощности, дом не будет достаточно хорошо прогреваться, а при избыточной — ресурсы будут расходоваться впустую.
Строительные нормы и правила
Для установления и закрепления норм теплопотерь дома существуют своды правил (СП), нормы и правила (СНиП), применяемые при строительстве, и ГОСТ:
- СП 131.13330.2012 – о строительной климатологии;
- СП 50.13330.2010 – о тепловой защите зданий;
- СП 60.13330.2012 – об отоплении, вентилировании и кондиционировании в зданиях воздуха.
- СНиП 2.04.07-86* – о тепловых сетях;
- СНиП 2.08.01-89* – о жилых зданиях;
- СНиП 2.04.05-91* – об отоплении, вентилировании и кондиционировании.
- ГОСТ 22270-76 – об оборудовании для кондиционирования, вентиляции и отопления;
- ГОСТ 30494-2011 – о параметрах микроклимата в помещениях жилых и общественных зданий;
- ГОСТ 31311-2005 – об отопительных приборах.
Данные энергетического паспорта МКД должны соответствовать вышеуказанной технической документации и быть в пределах регламентированных нормативов.
Тепловые потери за счет крыши или потолка
Потери тепла для потолка и крыши рассчитываются по той же формуле, что и для стен. Теплый воздух поднимается вверх, поэтому, чтобы не отапливать улицу, следует серьезно отнестись к утеплению крыши при строительстве. Основным параметром теплопотерь здесь будет неравномерность стыков. От выбора утепляющего материала тоже будет завесить очень многое. Так, например использование эковаты предполагает отсутствие влаги. А, как известно, вместе с теплым воздухом вверх поднимается и пар, который остывая, будет конденсироваться, оседать на утеплителе, замещая воздух и снижать термическое сопротивление утеплителя.
Для расчета теплопотерь трубопроводов промышленного назначения и подбора греющих кабелей для обогрева таких трубопроводов обращайтесь к нашим менеджерам!!!
Примечания:
- Для расчета введите все данные в соответствующие поля и нажмите кнопку «РАССЧИТАТЬ».
- Для труб из пропилена, металлопласта, пластика следует выбирать греющие кабели с погонной мощностью не более 10 Вт/м . Если расчетные теплопотери трубы превышают 10 Вт/м.п., следует использовать две и более ниток кабеля для компенсации теплопотерь (либо наматывать кабель спиралью — подробнее о монтаже см в статье: Как выбрать кабель для подогрева труб).
- Для металлических труб возможно применение нагревательных кабелей с погонной мощностью до 60Вт/м.
- Как правило, при установке кабеля внутри трубы, выделяемая мощность увеличивается в два раза.
- Рекомендованное значение коэффициента запаса мощности — 1,3.
- Рекомендуется применять теплоизоляцию со значением коэффициента теплопроводности не более 0,04 Вт/м°С.
Система отопления
Еще одним моментом, влияющим на потерю тепла, является работа самой отопительной системы. Чтобы радиатор не отапливал улицу за ним стоит установить отражающий экран из специального материала.
Перед началом нового отопительного сезона нужно стравить воздух из системы, это поможет сохранить фитинги в нормальном рабочем состоянии. Так же необходимо несколько раз промыть систему, чтобы убрать возможные засоры.
Нормальная работа отопительной системы гарантирует комфортные температурные условия в помещении.
Таким образом, расчет теплопотерь помогает сократить расходы на отопление. Основными параметрами, влияющими на тепловые потери являются выбор изоляционных материалов, площадь помещения, разность температур между помещением и окружающей средой, наличие воздушных полостей, а также исправность отопительной и вентиляционной системы.
Расчет отопления в частном доме
Расчет отопления в частном доме с помощью онлайн-калькулятора – рассчитайте теплопотери, мощность котла и секции радиаторов отопления по СНиП.
В процессе строительства любого дома, рано или поздно возникает вопрос – как правильно рассчитать систему отопления? Это актуальная проблема не исчерпает свой ресурс никогда, ведь если вы купите котел меньшей мощности, чем необходимо, придется затратить много сил для создания вторичного обогрева масляными и инфракрасными радиаторами, тепловыми пушками, электрокаминами, что также приведет к колоссальному расходу электроэнергии. Если же вы создадите систему отопления с чрезмерным запасом, то оборудование будет работать в половину мощности, а топлива будет потреблять практически столько же.
Наш калькулятор расчета отопления частного дома поможет вам не допустить типичных ошибок начинающих строителей. Вы получите максимально приближенное к реальности значение теплопотерь, производительности оборудования, количества секций радиатора и прочих данных, необходимых для создания надежной системы отопления. Главным преимуществом калькуляторов КАЛК.ПРО является высокая точность расчетных данных и минимальные знания со стороны пользователя – весь процесс автоматизирован, исходные параметры максимально обобщены, а их значения вы можно легко заполнить, опираясь на собственный опыт.