Коэффициент теплопроводности
В поисках хорошего материала для строительства необходимо определить, как меняется степень теплопроводности в зависимости от типа и модели монолита.
Коэффициент для различных видов монолита
Для сравнения показателей теплопроводности следует ознакомиться с таблицей, охватывающей свойства всех типов материала. Наименьшая степень присутствует у пористых конструкций:
- Сухие блоки и газонаполненный бетон обладают небольшой теплопроводностью. Она зависит от показателей плотности. Если удельный вес блока составляет 0,6 т/м³, коэффициент составит 0,14. При плотности 1 т/м³ — 0,31. Если влажность находится на базовом уровне, показатели увеличатся от 0,22 до 0,48. При повышении влажности — от 0,25 до 0,55.
- Бетон с наполнением керамзитом. С учетом значений плотности определяется теплопроводность. Изделие с плотностью 0,5 т/м³ получит показатель 0,14. По мере увеличения плотности до 1,8 т/м³ свойство вырастет до 0,66.
Еще коэффициент зависит от применяемых наполнителей. Так, если тяжелый бетон (2,4 т/м³) будет иметь в составе щебенку, параметр составит 1,51.
При использовании шлака теплопроводность составит 0,3-0,7. Изделия на основе кварцевого или перлитового песка с плотностью 0,8-1 получат проводимость тепла 0,22-0,41.
Факторы влияющие на коэффициент
Степень проводимости бетона любой марки определяется множеством факторов. В их числе:
- Структура массива. Если в монолите присутствуют воздушные полости, передача тепла будет медленной и без больших потерь. По мере увеличения пористости теплоизоляция улучшается.
- Удельный вес массива. Монолит обладает разной плотностью, которая определяет его структуру и интенсивность обмена тепла. При росте показателей плотности растет и теплоотдача. В результате конструкция быстрее лишается тепла.
- Содержание влаги в стенах из бетона. Массивы с пористой структурой гигроскопичны. Остатки влаги, находящейся в капиллярах, могут просачиваться в бетон и заполнять воздушные поры, способствуя быстрой передаче тепла.
При выполнении расчетов нужно учитывать, что снижение влажности минимизирует проводимость тепла, из-за чего уровень теплопотерь становится невысоким.
С помощью пористых компонентов можно защитить постройку от быстрого расходования тепла и обеспечить хорошие климатические условия в здании. Изделия с низкой теплопроводностью эффективны при изоляции помещений, поэтому их применяют в северных регионах с суровыми зимами.
Теплопроводность и утепление зданий
Приступая к организации эффективной теплозащиты частного жилища, важно обращать внимание на тип материала, из которого создаются стены. С учетом специфики конструкции и эксплуатационных свойств, выделяют такие разновидности бетонных масивов:
- Конструкционные. Необходимы при возведении капитальных стен. Их характеризует повышенная устойчивость к нагрузкам и способность быстро пропускать тепловую энергию.
- Материалы для теплоизоляции. Задействуются при обустройстве помещений с минимальными нагрузками на стены. Обладают небольшим весом, пористым строением и малой теплопередачей.
Чтобы в помещении всегда сохранялась комфортная температура, рекомендуется использовать для возведения стен разные виды бетона. Однако в таком случае показатели толщины стен будут меняться. Оптимальный уровень проводимости тепла возможен при таких параметрах толщины:
- Пенобетон — не больше 25 см.
- Керамзитобетон — до 50 см.
- Кирпичи — 65 см.
Как производится расчет
Для сохранения тепла внутри дома и сокращения потерь тепловой энергии несущие стены делаются многослойными. Чтобы рассчитать толщину слоя изоляции, необходимо руководствоваться следующей формулой — R=p/k.
Она имеет следующую расшифровку:
- R — показатель устойчивости к скачкам температуры;
- p — толщина слоя в метрах;
- k — Проводимость тепла монолитом.
С помощью такой формулы можно благополучно выполнить расчет с помощью простого калькулятора. Это решается путем разделения толщины на коэффициент теплопроводности.
Экономичная штукатурная теплоизоляция.
Полимерные штукатурки можно только купить, их не изготовить самостоятельно. Но растворы на минеральных вяжущих экономичнее смешивать своими руками.
Заказать работу наемным рабочим дорого. Но, если смесь изготовить самостоятельно, общая цена несколько упадет. Многие застройщики экономят таким образом: нанимают штукатуров, а сами выполняют для них «черную» работу. С учетом того, что помощь подсобника оплачивается не за м2, а по дням, экономия может быть не значительной. Приблизительно 800-1200 руб/день.
Еще дешевле самостоятельная подготовка стены, выставление маяков и грубое оштукатуривание. «Спецам» останется только выровнять покрытие и нанести декоративный раствор.
Теплоизоляционная дешевая штукатурка для наружных работ.
Изолирующие смеси дороже обычных, поскольку сложнее. Своими руками, к тому же, можно сделать далеко не все.
Однако изготовление раствора на основе цемента под силам любому начинающему строителю и способно ощутимо снизить расход средств. В качестве наполнителя можно использовать как влагостойкие насыпные материалы (вспененное стекло, керамзитовые пески), так и не влагостойкое (опилки, перлит, вермикулит). Последние лишь защищают слоем плотного бетона.
Для внешней теплоизоляционной штукатурки возможно применение полистирольных наполнителей. Самый экономичный наполнитель – измельченный пенополистирол. Его стоимость нулевая, он бесплатен. Если использовать для измельчения пенопластовую упаковку.
Такой бетон широко применяется в России и за ее пределами. Он не плотен и не применим в конструкциях, требующих высокой прочности. Но для внешних утепляющих штукатурок вполне подходит.
Теплоизоляционная штукатурка своими руками для внутренних работ.
За квадратный метр отделки без наполнителя застройщики отдают меньше, чем за смесь с наполнителем. Поэтому некоторые, особенно «предприимчивые» строители, пытаются добавлять утепляющие подсыпки в готовые смеси. Это запрещено: такие манипуляции сильно ослабляют раствор, снижают его прочность и долговечность.
Чтобы снизить стоимость за кв. м. проще сделать замес самому, используя недорогие наполнители и вяжущее. Так глиняно-опилочный раствор практически бесплатен, хотя и не уступает по прочности гипсовому. data-matched-content-ui-type=»image_stacked» data-matched-content-rows-num=»2″ data-matched-content-columns-num=»3″ data-ad-format=»autorelaxed»>
Коэффициент теплопроводности бетона для различных видов монолита
Определяясь с видом бетона, который будет использоваться для постройки жилого дома, следует оценить, как изменяется теплопроводность монолита для разновидностей этого строительного материала. Поможет сравнить теплопроводность бетона таблица, которая охватывает характеристики всех типов бетона. Рассмотрим, как изменяется уровень теплопроводности бетонного массива, который выражается в Вт/м2х ºC для наиболее распространенных разновидностей материала.
Наименьшее значение коэффициента у бетонных композитов с ячеистой структурой:
- для сухого пенобетона и газонаполненного бетона величина показателя небольшая, по сравнению с другими видами. Она возрастает при повышении плотности материала. При удельном весе 0,6 т/м3 коэффициент равен 0,14, а при плотности 1 т/м3 уже составляет 0,31. При базовой влажности значения возрастают от 0,22 до 0,48, а при повышенной от 0,26 до 0,55;
- керамзитонаполненный бетон, в зависимости от плотности массива, также имеет различную величину коэффициента, который изменяется пропорционально возрастанию удельного веса. Так керамзитобетон с плотностью 0,5 т/м3 имеет низкий коэффициент, равный 0,14, а при возрастании плотности до 1,8 т/м3 параметр теплопроводности возрастает до 0,66.
Величина коэффициента определяется также используемым для приготовления бетонной смеси наполнителем:
- для тяжелого бетона плотностью 2,4 т/м3, содержащего щебеночный наполнитель, показатель составляет 1,51;
- бетон, где в качестве наполнителя используются шлаки, характеризуется уменьшенной величиной теплопроводности, составляющей 0,3–0,7;
- керамзитобетон, содержащий кварцевый или перлитовый песок, имеет плотность 0,8–1 и, соответственно, уровень теплопроводности, равный 0,22–0,41.
Коэффициент теплопроводности бетона надежно теплоизолируют возводимое строение. При сооружении стен зданий из бетона, имеющего пористую структуру и пониженный уровень теплопроводности, необходим тонкий слой теплоизолятора. Применение тяжелых марок бетона требует усиленного утепления строения. Для этого укладывается толстый слой теплоизолятора. При подборе материала следует учитывать, что с возрастанием плотности увеличивается теплопроводность бетонного массива.
Приложение А (обязательное)
Таблица А.1
Материалы (конструкции) | Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации | |
А | Б | |
1 Пенополистирол | 2 | 10 |
2 Пенополистирол экструзионный | 2 | 3 |
3 Пенополиуретан | 2 | 5 |
4 Плиты из резольно-фенолформальдегидного пенопласта | 5 | 20 |
5 Перлитопластбетон | 2 | 3 |
6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс» | 5 | 15 |
7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс» | ||
8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна) | 2 | 5 |
9 Пеностекло или газостекло | 1 | 2 |
10 Плиты древесно-волокнистые и древесно-стружечные | 10 | 12 |
11 Плиты фибролитовые и арболит на портландцементе | 10 | 15 |
12 Плиты камышитовые | 10 | 15 |
13 Плиты торфяные теплоизоляционные | 15 | 20 |
14 Пакля | 7 | 12 |
15 Плиты на основе гипса | 4 | 6 |
16 Листы гипсовые обшивочные (сухая штукатурка) | 4 | 6 |
17 Изделия из вспученного перлита на битумном связующем | 1 | 2 |
18 Гравий керамзитовый | 2 | 3 |
19 Гравий шунгизитовый | 2 | 4 |
20 Щебень из доменного шлака | 2 | 3 |
21 Щебень шлакопемзовый и аглопоритовый | 2 | 3 |
22 Щебень и песок из вспученного перлита | 5 | 10 |
23 Вермикулит вспученный | 1 | 3 |
24 Песок для строительных работ | 1 | 2 |
25 Цементно-шлаковый раствор | 2 | 4 |
26 Цементно-перлитовый раствор | 7 | 12 |
27 Гипсоперлитовый раствор | 10 | 15 |
28 Поризованный гипсоперлитовый раствор | 6 | 10 |
29 Туфобетон | 7 | 10 |
30 Пемзобетон | 4 | 6 |
31 Бетон на вулканическом шлаке | 7 | 10 |
32 Керамзитобетон на керамзитовом песке и керамзитопенобетон | 5 | 10 |
33 Керамзитобетон на кварцевом песке с поризацией | 4 | 8 |
34 Керамзитобетон на перлитовом песке | 9 | 13 |
35 Шунгизитобетон | 4 | 7 |
36 Перлитобетон | 10 | 15 |
37 Шлакопемзобетон (термозитобетон) | 5 | 8 |
38 Шлакопемзопено- и шлакопемзогазобетон | 8 | 11 |
39 Бетон на доменных гранулированных шлаках | 5 | 8 |
40 Аглопоритобетон и бетон на топливных (котельных) шлаках | 5 | 8 |
41 Бетон на зольном гравии | 5 | 8 |
42 Вермикулитобетон | 8 | 13 |
43 Полистиролбетон | 4 | 8 |
44 Газо- и пенобетон, газо- и пеносиликат | 8 | 12 |
45 Газо- и пенозолобетон | 15 | 22 |
46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе | 1 | 2 |
47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе | 1,5 | 3 |
48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе | 2 | 4 |
49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе | 2 | 4 |
50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе | 2 | 4 |
51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе | 1,5 | 3 |
52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе | 1 | 2 |
53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе | 2 | 4 |
54 Древесина | 15 | 20 |
55 Фанера клееная | 10 | 13 |
56 Картон облицовочный | 5 | 10 |
57 Картон строительный многослойный | 6 | 12 |
58 Железобетон | 2 | 3 |
59 Бетон на гравии или щебне из природного камня | 2 | 3 |
60 Раствор цементно-песчаный | 2 | 4 |
61 Раствор сложный (песок, известь, цемент) | 2 | 4 |
62 Раствор известково-песчаный | 2 | 4 |
63 Гранит, гнейс и базальт | ||
64 Мрамор | ||
65 Известняк | 2 | 3 |
66 Туф | 3 | 5 |
67 Листы асбестоцементные плоские | 2 | 3 |
Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость
Коэффициент теплопроводности вакуума ↑
Интересно рассмотреть с этой точки зрения коэффициент теплопроводности вакуума. Он близок нулю — причем, чем вакуум глубже вакуум, тем его теплопроводность ближе к нулевой. Почему? Дело в том, что в вакууме крайне низкая концентрация материальных частиц, которые способны переносить тепло. Но тепло в вакууме всё же передаётся — при помощи излучения. Так, например, чтобы довести до минимума теплопотери, термос делают с двойными стенками, откачивая между ними воздух. А также делают «серебрение». На том же качестве, что зеркальная поверхность отражает излучение лучше, основаны свойства таких материалов, как фольгированный пенофол и другие подобные изоляционные материалы.Ниже смотрим познавательные видеоматериалы для более полного представления такого физического понятия, как теплопроводность, на конкретных примерах.
Применение показателя теплопроводности на практике
В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым
Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающих конструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивления
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
Рассчитывать придется все ограждающие конструкции
- Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными
Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание
Разновидности утепления конструкций
Вермикулит
Подбор материала для утепления любой конструкции, в первую очередь осуществляется исходя из ее типа: наружная или внутренняя. В первом варианте, в качестве утеплителя хорошо подойдут вещества, не поддающиеся воздействию погодных условий, и других внешних факторов, а именно:
- вермикулит;
- керамзит;
- перлитовый щебень.
Для большего эффекта, утеплитель можно наносить в два слоя, где вышеперечисленные материалы будут считаться защитным слоем, а в качестве основы, вполне смогут выступить:
- пенопласт;
- пеноизол;
- пенополистирол;
- пенополиуретан.
Пеноизол
Что же касается исключительно внутреннего варианта утепления конструкций, то для этого вполне сгодятся такие материалы:
- минеральная вата;
- стекловата;
- вата из базальтового волокна;
- эковата.
Помимо сферы применения, утеплители значительно отличаются между собой и своей стоимость, теплопроводностью, герметичностью, а также сроком службы, на что следует обратить внимание при их выборе
Коэффициенты теплопроводности строительных материалов в таблицах
Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.
Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.
Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления. Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.
Если задумано индивидуальное строительство
При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки). Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:. Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:
Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:
Номер п/п | Материал для стен, строительный раствор | Коэффициент теплопроводности по СНиП |
1. | Кирпич | 0,35 – 0,87 |
2. | Саманные блоки | 0,1 – 0,44 |
3. | Бетон | 1,51 – 1,86 |
4. | Пенобетон и газобетон на основе цемента | 0,11 – 0,43 |
5. | Пенобетон и газобетон на основе извести | 0,13 – 0,55 |
6. | Ячеистый бетон | 0,08 – 0,26 |
7. | Керамические блоки | 0,14 – 0,18 |
8. | Строительный раствор цементно-песчаный | 0,58 – 0,93 |
9. | Строительный раствор с добавлением извести | 0,47 – 0,81 |
Важно. Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.
Это связано с несколькими причинами:
Это связано с несколькими причинами:
- Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
- Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
- Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.
Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.
Как определить коэффициенты теплопроводности строительных материалов: таблица
Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:
Необходимые коэффициенты для самых различных материалов
Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.
Технические характеристики утеплителей для бетонных полов
О значении теплопроводности можно судить по сравнительным характеристикам
Полезные рекомендации
Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.
Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы
Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.
При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции
Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.
Создание теплого пола требует особых знаний
Важно учитывать высоту и толщину материалов. Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления. При этом важно повысить отдачу тепло от радиаторов
Для этого стоит воспользоваться следующими советами:
При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:. Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления
Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления
При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:
- если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
- чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
- для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
- если снять декоративный экран, то теплоотдача увеличиться на 25 %.
Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении
Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.
Выбор утеплителя зависит от материала самой двери
Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.
Экономьте время: отборные статьи каждую неделю по почте
Зачем нужна теплоизоляция?
Актуальность теплоизоляции заключается в следующем:
Сохранение тепла в зимний период и прохлады в летний период.
Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.
Увеличение долговечности конструкций здания.
В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены.
Такое утепление позволяет увеличить срок службы здания во много раз.
Шумоизоляция.
Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).
Увеличение полезной площади зданий.
Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.